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1. INTRODUCTION

The Melnikov method traditionally is restricted to study problems with weakly non-linear
phenomena. This method developed by Melnikov [1] was generalized by Holmes and
Marsden [2]. A detailed description of the Melnikov method was given by Guckenheimer
and Holmes [3]. Similar results were obtained by Chow et al. [4]. For some oscillator
systems with periodic perturbations it can be shown that, as a parameter is varied, repeated
resonance of successive periods occur culminating in homoclinic or heteroclinic orbits.
There exists a global method within the perturbation theory. The Melnikov function is used
to measure the distance between unstable and stable manifolds when that distance is small
by Guckenheimer and Holmes. It has been applied to problems that both the dissipation
and forcing amplitude are small and the equation for the manifolds of the Hamiltonian for
the undamped and unforced are known.

In this paper, the existence and bifurcation results are supplemented by a Melnikov
method for strongly odd non-linear systems. The results imply that the homoclinic
bifurcation is the limit of a countable sequence of subharmonic bifurcations.

We consider the response of strongly non-linear oscillators of the form

uK#eg uR #g
1
(u)#eg

2
(u)"epf (Xt), (1)

where dots are t derivatives. Here u is the displacement, g
1
(u) is a linear or an odd non-linear

function of u; g
2
(u) is an odd non-linear function of u. The ordering parameter e, g and p are

assumed to be positive. Of interest are situations for which the response is strongly
non-linear, which means that e is not small, ep is not small, the response amplitude is large,
or a combination of these.

In this work, we seek a new expansion parameter a"a(e) in such a way that a strongly
non-linear system (large e) is transformed into a weakly non-linear system (small a). The
main ideas and analytical techniques to be used are brie#y illustrated below:

(1) Consider the free vibration of the conservative non-linear oscillator governed by an
equation of motion of the form

uK#u#eu3"0, (2)
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which does not involve perturbations. We use the results of a time transformation method
[5}8] and obtain the following relation for the period ¹ of the Du$ng oscillator:
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where a is the amplitude of the free vibration of equation (2),
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This relation is quickly convergent regardless of the magnitude of ea2, since a(1/3 for all
ea2. This result indicates that for this oscillator an accurate period calculation can be
obtained through consideration of the e!ect of only the fundamental harmonic of the
non-linear oscillation. This has been pointed out by Jones [8].

(2) a parameter a"a(e, a) is de"ned [8] and
(3) the square frequency X2 is expressed as a leading factor (1#3ea2/4),

X2"(1#3
4

ea2) (1#ap). (5)

We suppose that the forcing frequency X can be expressed using the parameter a de"ned
for the free vibration equation (3). Since the problem is being approached in a backwards
fashion (that is, normally X is speci"ed and a is to be determined) the parameter a is
assumed to be known ahead of time. Furthermore, we assume the leading factor
(1#3ea2/4) to represent a reasonably accurate approximation to the backbone curve [8],
the curve de"ning the amplitude dependence of free vibration frequency.

For example, through time transform of the above these three steps, the Melnikov
method can be used for systems with strongly odd non-linear terms and large perturbations.

The perturbed system is

uK#eg uR #Au#eBu3"ep cos Xt. (6)

Of interest are situations for which the perturbations are strongly non-linear, which
means that e is not small, ep is not small, the response amplitude is large, or a combination
of these. In this work, we seek a new expansion parameter a"a (e) in such a way that
a strongly perturbed non-linear system (large e) is transformed into a weakly perturbed
non-linear system (small a). It results in

uK#Cu#Du3#aGCp#
3

A
(1!A#pA)D uK#

4k
ABa2

uR !
4p
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cos X tH"0, (7)

where C"(1!3a), D"4a/Aa2, k"gX and a is a small parameter.
The Melnikov method can be used for large strongly odd perturbed non-linear terms and

large perturbations systems, necessary through time transform.



556 LETTERS TO THE EDITOR
2. APPLICATION TO A PENDULUM SUSPENDED ON A ROTATING ARM

The new structural design ([9] see Figure 1) in this paper permits the length ratio R/r, as
a control parameter, of smaller than one. For various magnitudes of the length ratio and
di!erent relative positions (0 and n) of the pendulum to the arm, the abundance of regular
and chaotic dynamics exhibit in the system, which is quite di!erent from that of traditional
vibrated pendulum. The shaft rotates about the y

1
-axis with the angular rate u. The

pendulum is pivoted (axis A}A) on an arm rigidly attached to the shaft. This rotation of the
pendulum is described by the angle h. The gravitational vector is in the negative z

1
direction. The length of the arm is R and the length of the pendulum is r.

Motion is described by Lagrange's equation

mr2
d2u

dt2
#c

r

du

dt
#sin u (mRru2#mr2u2 cos u#mrg sinut)"0, (8)

where u is the angular rate of the shaft, c
r
is the damping coe$cient, g is the gravitational

constant, m is the mass of the pendulum, t is time, r is the length of the pendulum, and R is
the length of the arm which is the distance from the pivot to the center of the shaft. Let
h"u#n. Thus, the equation of motion (8) becomes

d2u

dt2
!u2 sin u (o!cos u)#eA2g

du

dt
!f sin u sinutB"0, (9)

where 2g"c
r
/mr2, o"R/r and f"g/r.
Figure 1. The pendulum on rotating arm.
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By the time transform of the above three steps, a modi"ed version of subharmonic
Melnikov functions [10}12] is given by
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where K(k) is the complete elliptic integral of the "rst kind and
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it is easy to see that the condition for the existence of zero's of the subharmonic Melnikov
function becomes

f

g
*2XR

m
(-). (12)

The parameter values f /g"2XR
m
(-) are critical in some sense, we call bifurcation. The

bifurcation values of f /g are approximated by equation (12). Table 1 is related to the "rst
appearance of certain subharmonics with short periods. As o increases such subharmonics
arise from pitchfork bifurcations. In order to determine numerically these bifurcation value,
we have to follow the corresponding subharmonic in the direction of decreasing o until it
vanishes. For o values slightly above the critical value the change in o has to be carried out
in steps of Do"0)001 and Def"0)5.



TABLE 1

¹heoretical and numerical bifurcation values of o for subharmonics in dependence on u, eg and
ef in the strongly odd non-linear oscillators

m u eg ef Theoretical value Numerical value

2 2)0 0)4 14)5 0)607 0)6062
2 2)0 0)4 15)0 0)480 0)4812
2 2)0 0)4 16)0 0)245 0)2453
2 2)0 0)4 16)5 0)133 0)1357

Figure 2. Bifurcation functions R
m
(u) in dependence upon u from equation (13).
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Using the relative 4J1#k2K(k)/JAI"2nm/-, the even subharmonic condition can be
obtained,

R
m
(-)"

4(AI )3@2[(1#k2)E(k)!(1!k2)K(k)]

3n-2(1#k2)3@2
sinh A

- J1#k2K@(k)

AI B. (13)

For arbitrary "xed -, we study the limit behavior of the subharmonic Melnikov functions
for mPR, i.e., kP1. Equation (13) is to verify that this limit exists

R
=
(-)"

2J2AI 3@2
3n-2

sinhA
- J2n

2AI B . (14)

Also, using the expansion of E(k) and K(k) in kP1, for arbitrary given - and enough
k approach 1 (i.e., enough large m), we can prove

R
m
(-)(R

=
(-). (15)

We conclude that for f/g'2XR
=
(-), one have in"nitely many periodic orbits. Moreover,

in the limit mPR, for resonance ¹(k)PR, which implies that we are approaching the
homoclinic orbit. This phenomenon we call chaos. When u"-, then Figure 2 shows



Figure 3. Regions of chaos in the forcing amplitude f versus the frequency u plane from theory for equations
(12) and (13) and numerical simulation for parameter values at (g, o, a, e)"(0)2, 0)5, 1/4)0, 2)0).

LETTERS TO THE EDITOR 559
bifurcation functions R
m
(u) in dependence upon u. Only the functions with the largest

m values can be close to R
=

(u). It is obvious that the R
=
(u), R

6
(u) curve ends at u"3 and

5 respectively. The true three small bands (*) of chaotic motion and the theoretical region
satisfying equations (12) and (13) are drawn in the forcing amplitude f versus the frequency
u plane in Figure 3.

3. CONCLUSIONS

The Melnikov method is traditionally restricted to study problems with weakly
non-linear phenomena including su$cient small harmonic excitation. This paper allows to
extend Melnikov approach to speci"cally two-dimensional di!erential equations that
possess strongly odd non-linear function of the displacement and are subjected to large
harmonic excitation. It is evident that agreement between theory and numerical simulation
can clarify this problem.
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